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Background 

•  Simulations of fusion-relevant plasmas confined in a 
torus-shaped magnetic bottle called “tokamak” 

•  “Fusion-relevant” means plasma temperatures of 100 
million+ degrees 

•  Biggest challenge: ITER 
•  Much larger than current 

tokamaks 
•  “Burning plasma” 

experiments 
•  Will require prediction of 

each tokamak shot 

•  Ultimate goal is “whole 
device modeling” (WDM) 



Whole device modeling is extremely 
challenging 
•  The important physics spans 

huge range of spatial and 
temporal scales 

•  Overlap in scales often 
means strong (simplified) 
ordering not possible 

•  Transport codes use fluid 
approach with “reduced” 
models to simulate full 
discharge (few seconds) 
–  Can miss some important 

physics 
–  Difficult to find enough 

parallelism 
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The Gyrokinetic approach 

•  Start in the middle and do 
first principles calculation 

•  Try to expand on “both 
sides” 

•  Kinetic approach naturally 
capture the important 
physics (e.g. turbulence) 

•  The particle-in-cell algorithm 
is currently the most 
promising approach to 
achieve exascale level 
–  Lots of parallelism (200 billion 

particles, 100 million grid 
points to simulate ITER) 
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What is the “Gyrokinetic” approach anyway? 

•  Fast helical motion of 
charged particles in strong 
magnetic field integrated 
out in gyrokinetic equation 
–  Helical motion replaced by 

moving rings of dynamically 
changing radius 

–  No need to resolve the 
helical (cyclotron) motion = 
larger time step 

•  Complicates charge 
deposition step 
–  Random access to memory 

unless particles are sorted 

ρ

Classic PIC 4-Point Average GK 
(W.W. Lee, JCP 1987) 

Charge Deposition Step (SCATTER operation) 



The “low frequency” GKPIC method 
•  Particles sample distribution function of “gyrocenters” 
•  Interactions via a grid on which charges are accumulated 

and fields are evaluated (PDE solve) (avoids N2 calc.) 
•  100-1000X more particles than grid points 
•  Grid resolution dictated by the gyroradius (Larmor radius) 

The PIC Steps 
•  “SCATTER”, or deposit, 

charges on the grid (nearest 
neighbors of 4 gyro points) 

•  Solve Poisson equation 
•  “GATHER” forces on each 

gyrocenter particle 
•  Move particles (PUSH) 
•  Repeat… 



GTS global delta-f GKPIC code in general 
geometry for studying core turbulence in real 
experiments 
•  Efficient field-aligned grid 
•  Magnetic coordinates 
•  4-point average method for 

charge deposition 

•  Non-spectral Poisson solver 
•  Energy and momentum 

conserving guiding center 
Lagrangian equations for 
particles time-stepping  



XGC1 full-F code for plasma edge turbulence 
in diverted geometry, with X-point and wall 
•  Comprehensive first 

principles code 
•  Move particles along 

the characteristics 
!ODE equation (RK4) 

•  Solve the self-
consistent field ! PDE 
equation solved using 
PETSc (preconditioner 
Hypre, KSP GMRES) 

•  Kinetic ions + electrons 
(real mass ratio) 

•  Non spectral solver (FE 
iterative multi-grid solver) 

http://epsi.pppl.gov/ 



XGC1’s programming models 
•  MPI + OpenMP + CUDA Fortran 

for GPU 
•  Top level = MPI 

–  Toroidal domain decomposition 
–  Multi-process particle distribution 

within toroidal domains (require 
careful load balance) 

–  Grid-based solver splits matrices 
between processes within each 
toroidal domain (finite element 
solver), implemented with PETSc 
library 

•  Fine-grained OpenMP at loop level 
•  CUDA Fortran for electron time-

advance on GPU 

Core	plasma	
(hot,	collisionless)	

Edge	region	
(large	gradients)	

X-point	(poloidal	
magne8c	field	vanishes)	

Wall	
boundary	

Separatrix	
(white	line)	

“Scrape-off	layer	
(cold,	collisional	plasma	
		neutral	atomic	physics)	

Divertor	
region	



Requirements for exascale 

•  MASSIVE amount of parallelism 
–  Billions of threads may be required to keep the hardware busy 

•  Vectorize your loops 
–  Vectorization is back and is necessary to achieve good loop-

level performance 

•  Having to deal with several levels of memory hierarchy 
–  The way data is accessed is critical 

•  Avoid global synchronization 
–  Having all execution threads (or MPI tasks) stop and wait for 

each other is a bad idea 

•  Limit I/O, deal with resiliency, etc. 



At exascale, vectorization is important so 
loop-level OpenMP parallelism is too “fine-
grained” "competes with vectorization 

MPI_init 

MPI process MPI process MPI process MPI process 

MPI_finalize 

OpenMP 
Loop 

OpenMP 
Loop 

Start 
threads 
Merge 
threads 

•  Bring OpenMP to a higher (coarser) level and limit “serial” 
regions. (At least bring to outer loop if nested loops) 

•  Use vectorization at the (inner) loop-level (splitting a loop in 
2 levels is also a possibility 

Vectorization is 
important even on 
current systems and 
certainly on the ones 
coming up (Intel Xeon 
Phi and GPUs) 
 



Ways to implement coarse-level OpenMP 
•  MPI style 

!$omp parallel private(thid,num_th)
num_th=omp_get_num_threads()
thid=omp_get_thread_num()
… use “thid” to divide work and do lots of it
!$omp end parallel

•  Use OpenMP tasks! 
!$omp parallel private(…)
!$omp master (or single)
   !$omp task
    ... Independent tasks
   !$omp end task
!$omp end master
!$omp end parallel

Master thread constructs a list 
of tasks. 
Threads will be assigned 
tasks by scheduler 
This allows for asynchronous 
execution  
          = good load balance 
 



How to deal with heterogeneity and many 
levels of memory hierarchy 
•  Let the computer scientists figure it out! 

–  Hide this complexity from the application scientists as much as 
possible, while still providing a practical set of abstractions to 
exploit data locality and key hardware features (would be ideal!) 

–  Domain Specific Languages (DSLs) and autotuning are certainly 
good approaches for dealing with widely used algorithms that are 
well-known (PDE solvers, FFT spectral solvers, etc.) 

–  Projects such as Kokkos (Sandia) and Raja (LLNL) are examples  
–  At the very least we need efficient thread-safe libraries, in 

particular, MPI library 

•  In reality, we will probably need to do it ourselves 
–  It’s all about the data structures and the way they are accessed 
–  Need to worry about such things as “Array-of-Structures” (AoS) 

and “Structures-of-Arrays” (SoA) and even AoSoA, etc.  



Synchronization is bad! What to do 

Specific example from global GK PIC code like XGC1: 
•  Coherent access (or atomic updates) to large working sets 

–  All threads within a process may need shared random read-modify-
write access to O(100MB), the size of a poloidal plane (PIC “scatter” 
phase) 

–  The biggest gap in existing models is the performance of fine-
grained (increment 2 doubles) atomics or transactions (the most 
natural ways of expressing this).  This performance deficiency 
motivates complex decompositions or replications.  The former 
require inter-process communication.  The latter require extra 
memory.  Both are unattractive in the manycore limit but that’s all 
we have at the moment 



How about inter-node communication? 
Domain decomposition in the toroidal direction 

•  The information about a particle must be moved along 
with that particle when exiting a toroidal domain 

•  This is done in a “ring-like” fashion with MPI_sendrecv 
(“shift” step) 



Moving particles between tasks: 
MPI vs. PGAS Fortran Co-arrays (CAF) 

Classical hybrid 
MPI/OpenMP 
programming model 

The advanced hybrid PGAS/
OpenMP algorithm builds on the 
strategy of communicating 
threads, but allows ALL OpenMP 
threads per team to make 
communication calls to the 
thread-safe PGAS communication 
layer 

Bulk data 
transfer 
by only 1 
thread 



Co-array Fortran constructs (to replace MPI) 
included in the Fortran2008 standard 

The declaration:       real :: x(n)[p,q,*]      means: 
•  An array of length n is replicated across images. 
•  The underlying system must build a map among these 

arrays. 
•  The logical coordinate system for images is a three 

dimensional grid of size(p,q,r) where r=num_images()/
(pq) 

•  Communicating between co-array objects 
–  y(:) = x(:)[p] 
–  myIndex(:) = index(:)  
–  yourIndex(:) = index(:)[you] 
–   x(:)[q] = x(:) + x(:)[p] 



CAF algorithm for overlapping 
communication with computation (Preissl, SC11) 

Can use OMP TASK here!!! 

Each OMP thread goes through a 
subset of the particles and fills a 
“small” buffers with the outgoing 
particles until full.  
At that point it uses Fortran 
Co-arrays to transfer the particles 
directly to the memory of its 
destination after getting the address 
with atomic fetch-and-add operation: 
               AMO_AFADD() 



It is hard to keep a billion threads busy at all 
time. Can we deal with periods of idle cores? 

•  In XGC1  runs we have  >1000 more particles than 
grid points 

•  During computations involving only grid data (e.g. field 
solver) it might not efficient to engage all the cores. On 
heterogeneous systems, running each subroutine on 
both CPU and GPU is very hard. What to do?  
–  Do some I/O, such as checkpointing? (needed but not at every 

time step) 
–  Power them down to save energy? (that’s boring..) 
–  Give them other tasks to do, such as diagnostics, analysis, 

rendering for visualization! 



GoldRush (SC13, Zheng et al.): Monitor resources 
and run analyses on idle OpenMP cores 

•  Harvest Idle Resources for In-
Situ Analytics 

•  Dynamically predict idle 
resource availability 

•  Reduce interference with 
execution throttling 

•  Uses ADIOS FlexIO method 
•  Overhead of GoldRush < 

0.3% 
Particle visualization (parallel coordinates) 



Last comment 

•  There is a huge amount of parallelism in particle-in-cell 
codes, making them ideal for exascale 

•  It won’t be easy though. There are many challenges 
starting with the indirect addressing due to the particle-
grid gather-scatter operations. 

•  Maybe we can get rid of the grid? … 
 



Thank you… 


